Absolute Paleointensity

The evolution of geomagnetic field is of great significance to studying the geodynamics. Geomagnetic field is a vector field, including both direction and intensity variation. Compared to the ancient direction information, the paleointensity is more difficult to obtain because of its complicated theory and experiment.


Most of the archaeologic materials (brick, tile and pottery) and volcanics can get a remanent when cooling from high temperature in an external field, which is called TRM. There are some researches indicate that the obtained TRM is proportional to the applied field when cooling in a low field (the geomagnetic field, for example). That is to say, if we can simulate the ancient TRM obtaining procedure in a given field in the lab, the ancient field can be calculated from TRMlab/NRManc = Blab/ Banc.


A number of paleointensity methods have been proposed each with advantages and disadvantages. One of the original methods proposed was developed in 1950's by Emile and Odette Thellier[1] . The method, known as the Thellier method, progressively replaces a samples natural remanent magnetization (NRM) with a laboratory TRM acquired in a known field. This yields multiple estimates of TRMlab/NRManc, which allow a more robust estimate of B_anc to be made. The unique feature of the original Thellier method is that the NRM is replaced using a series of pairwise heatings to progressively higher temperatures. During the first heating to the set temperature an applied field (Blab) is present throughout. The second heating to the same temperature is also in an applied field, but in the opposing direction (-Blab). The vector sum of the two heating is twice the NRM remaining and the vector difference is twice the TRM gain.

Influence effects

There are many influence factors during the paleointensity experiments, including mineralogy alteration during heating[3, 18, 21, 22], grain size effects of MD or PSD[23-25], anisotropy of magnetic remanence[26-30] and cooling rate effects[31-37]. All of these effects may lead to bias of paleointensity estimation.


  1. ^ Thellier E., Thellier O. Sur I’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Geophysique, 1959, 15: 285-378.

1. Thellier E., Thellier O. Sur I’intensité du champ magnétique terrestre dans le passé historique et géologique[J]. Annales de Geophysique, 1959, 15: 285-378.
2. Coe R. S. Paleo-intensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks[J]. J. Geophys. Res., 1967a, 72: 3247-3262.
3. Coe R. S. The determination of paleo-intensities of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behavior in Thellier’s method[J]. J. Geomag. Geoelectr., 1967b, 19: 157-179.
4. Aitken M. J., Allsop A. L., Bussell G. D., Winter M. B. Determination of the intensity of the Earth’s magnetic field during archeological times: Reliability of the Thellier technique[J]. Reviews of Geophysics, 1988, 26: 3-12.
5. Yu Y. J., L. Tauxe, A. Genevey. Toward an optimal geomagnetic field intensity determination technique[J]. Geochem. Geophys. Geosyst., 2004, 5, Q02H07, doi: 10.1029/2003GC000630.
6. Yu Y. J., L. Tauxe. Testing the IZZI protocol of geomagnetic field intensity determination[J]. Geochem. Geophys. Geosyst., 2005, 6, Q06H11, doi: 10.1029/2004GC000840.
7. Wilson R. L. Palaeomagnetism in Northern Ireland: part I. The thermal demagnetization of natural magnetic moments in rocks[J]. Geophys. J. R. Astr. Soc., 1961, 5: 45-58.
8. Van Zijl J. S. V., K. W. T. Graham, A. L. Hales. The palaeomagnetism of the Stormberg lavas: II. The behaviour of the magnetic field during a reversal[J]. Geophys. J. R. Astr. Soc., 1962, 7: 169-182.
9. Shaw J. A new method of determining the magnitude of the palaeomagnetic field: Application to five historic lavas and five archaeological samples[J]. Geophys.J. R. Astr. Soc., 1974, 39: 133-141.
10. Kono M. Reliability of paleointensity methods using alternating field demagnetization and anhystertic remanence[J]. Geophys. J. Roy astron Soc., 1978, 54: 231-261.
11. Senanayake W. E., McElhinny M. W., McFadden P. L. Comparison between the Thellier’s and Shaw’s paleointensity methods using basalts less than 5 million years old[J]. J. Geomag. Geoelectr., 1982, 34: 141-161.
12. Kono M., N. Ueno. Paleointensity determination by a modified Thellier method[J]. Phys. Earth Planet. Inter., 1977, 13: 305–314.
13. Hoffman K. A., V. L. Constantine, D. L. Morse. Determination of absolute palaeointensity using a multi-specimen procedure[J]. Nature, 1989, 339: 295-297.
14. Hoffman K. A., A. J. Biggin. A rapid multiple-sample approach to the determination of absolute paleointensity[J]. J. Geophys. Res., 2005, 110, B12108, doi: 10.1029/2005JB003646.
15. Dekkers M. J., H. N. Böhnel. Reliable absolute palaeointensities independent of magnetic domain state[J]. Earth Planet. Sci. Lett., 2006, 248: 508–517.
16. Walton D., J. Shaw, J. Share, J. Hakes. Microwave demagnetization[J]. J.Appl. Phys., 1992, 71: 1549-1551.
17. Walton D., J. Share, T. C. Rolph, J. Shaw. Microwave magnetisation[J]. Geophys. Res. Lett., 1993, 20: 109–111.
18. Cottrell R. D., Tarduno J. A. Geomagnetic paleointensity derived from single plagioclase crystals[J]. Earth Planet. Sci. Lett., 1999, 169: 1-5.
19. Pick T., Tauxe L. Geomagnetic paleointensities during the Cretaceous normal superchron measured using submarine basaltic glass[J]. Nature, 1993, 366: 238-242.
20. Weiss B. P., Lima E. A., Fong L. E., Baudenbacher F. J. Paleointensity of the Earth’s magnetic field using SQUID microscopy[J]. Earth Planet. Sci. Lett., 2007, 264: 61-71.
21. Collinson D. W. Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instrumentation. Chapman and Hall, 1983, London, 503 pp.
22. Cottrell R. D., J. A. Tarduno. In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses[J]. J. Geophys. Res., 2000, 105: 23,579-523,594.
23. Shcherbakov V. P., Shcherbakova V. V. On the suitability of the Thellier method of palaeointensity determinations on pseudo-single-domain and multidomain grains[J]. Geophys. J. Int., 2001, 146: 20-30.
24. Dunlop D. J., Xu S. Theory of partial thermoremanent magnetization in multidomain grains: I. Repeated identical barriers to wall motion (single microcoercivity)[J]. J. Geophys. Res., 1994, 99: 9005-9023.
25. Xu S., Dunlop D. J. Theory of partial thermoremanent magnetization in multidomain grains: II. Effect of microcoercivity distribution and comparison with experiment[J]. J. Geophys. Res., 1994, 99: 9025-9033.
26. Rogers J., J. M. W. Fox, M. J. Aitken. Magnetic anisotropy in ancient pottery[J]. Nature, 1979, 277: 644–646.

28. Veitch, R. J., I. G. Hedley, et al. (1984). "An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles." Arch. Sc. Geneve 37: 359-373.

29. Chauvin, A., Y. Garcia, et al. (2000). "Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France." Physics of the Earth and Planetary Interiors 120(1-2): 111-136.

30. Selkin P. A., W. P. Meurer, A. J. Newell, J. S. Gee, L. Tauxe. The effect of remanence anisotropy on paleointensity estimates: A case study from the Archean Stillwater Complex[J]. Earth Planet. Sci. Lett., 2000, 183: 403-416.
31. Néel, L. (1955). "Some theoretical aspects of rock-magnetism." Advances in Physics 4(14): 191-243.

32. Dodson M. H., E. McClelland-Brown. Magnetic blocking temperatures of single-domain grains during slow cooling[J]. J. Geophys. Res., 1980, 85: 2625-2637.
33. FOX, J. M. W. and M. J. AITKEN (1980). "Cooling-rate dependence of thermoremanent magnetisation." Nature 283: 462-463.

34. Halgedahl S. L., R. Day, M. D. Fuller. The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite[J]. J. Geophys. Res., 1980, 85: 3690-3698.
35. McClelland E., Briden J. Experiments on TRM intensity dependence on cooling rate[J]. Geophys. Res. Lett., 1984, 11: 205-208.
36. Genevey, A. and Y. Gallet (2002). "Intensity of the geomagnetic field in western Europe over the past 2000 years: New data from ancient French pottery." J. Geophys. Res. 107(B11): 2285.

37. Ferk, A., F. W. v. Aulock, et al. (2010). "A cooling rate bias in paleointensity determination from volcanic glass: An experimental demonstration." J. Geophys. Res. 115(B8): B08102.

Further Reading

Can be removed if not needed.

See Also

Relative Paleointensity
Thellier-Thellier Paleointensity Method
Coe Paleointensity Method
Shaw Paleointensity Method
Microwave Paleointensity Method
Perpendicular Paleointensity Method
Single Crystal Paleointensity Method
Multispecimen Paleointensity Method